
A mean-field theory of the transition from local-moment to heavy-fermion behaviour

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 10473

(http://iopscience.iop.org/0953-8984/1/51/018)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 11:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/51
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 1 (1989) 10473-10486. Printed in the U K  

A mean-field theory of the transition from local-moment to 
heavy-fermion behaviour 

S M M Evans?, T ChungS and G A Gehringg 
Department of Theoretical Physics, Oxford University, Oxford OX1 3NP, UK 

Received 7 July 1989 

Abstract. We use a slave-boson technique in the mean-field approximation to obtain the 
temperature ( T )  dependence of the valence, nf, the susceptibility, xs, and the specific 
heat, C V ,  for a lattice of mixed-valence ions. We find that the mean-field solution is 
sufficient to extrapolate between the low- and high-temperature regimes giving for example 
an enhanced Pauli-like susceptibility for low T and a Curie-Weiss-like susceptibility at high 
T .  We consider an extension to the Anderson model in which direct f-f hopping is included 
and show that such a model exhibits a variety of interesting low-temperature behaviour. 

1. Introduction 

The mixed-valence and heavy-fermion compounds are characterised by Fermi-liquid- 
like behaviour at low temperatures going over to local moment behaviour as the 
temperature is increased. The temperature dependence of the magnetic susceptibility, 
x s ,  and the specific heat, C , ,  clearly shows the crossover between the two types of 
behaviour (see Laurence et a1 1981 and Stewart 1984 for reviews). 

In this paper we consider the temperature-dependent behaviour using the slave- 
boson mean-field solution for the periodic Anderson model. The slave-boson technique 
has had much success in providing a microscopic description for the heavy-fermion 
compounds in the low temperature strong-coupling regime (Millis and Lee 1987) and 
we wish to consider to what extent it is successful in describing the high-temperature 
weak-coupling behaviour as well. At mean-field level self-consistent equations for nf, 
the renormalised f-level energy, ef,  and the Fermi level, p, are found. These can be 
solved analytically for zero temperature giving rise to renormalised bands with heavy 
quasiparticles at the Fermi level thus giving the correct low-temperature description. 
In this paper we solve the equations numerically at finite temperature. We show that 
for the lattice the mean-field equations are sufficient to produce both high- and low-T 
behaviour which is in good qualitative agreement with experiment. Our results are 
compared with the experimentally observed universal ‘scaling’ relations for xs and 
approximately the correct relations are found. A similar crossover can be found as a 
function of applied magnetic field. The mean-field solution is thus a very reasonable 
but simple first approximation to the whole of the temperature regime. 
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We note that the mean-field solution gives a state of broken symmetry and a second- 
order phase transition exists between the low-temperature strong-coupling regime and 
the high-temperature weak-coupling regime. The phase transition is wiped out when 
fluctuations about the mean-field level are included. We show that for the lattice 
this phase transition only occurs for T + TK and in practice it does not restrict our 
calculations. Despite the fact that we are still below the phase transition and might 
expect that we are still in the strong-coupling regime the high-temperature behaviour 
is given correctly. We note that this is in contrast to the single-impurity case where 
similar calculations have been done. There it is seen that nf increases rapidly to one 
and the phase transition occurs for T - TK (Coleman 1985). The mean-field solutions 
only reproduce the low-temperature behaviour and the crossover to high-temperature 
behaviour is not obtained. Similarly the high-magnetic-field behaviour cannot be 
accessed. 

Recently an extension to the Anderson model in which direct f-f hopping is 
included has been considered (Harrington et a1 1988). At zero temperature it was 
shown that there is a phase transition as a function of t the bare f-f band width. 
There is a finite discontinuity in the specific heat at t = t,. This corresponds to a 
transition from a state in which only the lower band crosses the Fermi level, the upper 
band being empty, to one in which both bands cross the Fermi level and the density 
of states becomes continuous. At finite temperature we show that this transition is 
smoothed out due to the fact that for T > 0 the occupation of the upper level is 
never zero and the distinction between the two cases becomes blurred. We show, 
however, that near the transition point, t - t,, interesting low-temperature behaviour 
develops. This may be of significance given the variety of low-T behaviour which is 
in fact observed in the heavy-fermion compounds. The inclusion of t also enables us 
to widen our parameter space and show that although we have altered somewhat our 
low-temperature description in a way that makes the Fermi-liquid-like behaviour more 
apparent the crossover to a local-moment regime still occurs and the high-temperature 
behaviour is as before. 

We perform the calculations for a variety of values of N ,  the f-level degeneracy, 
and show that although the behaviour is still qualitatively correct even for small values 
of N the accuracy of our calculations improves as N increases. The mean-field solution 
corresponds to working to zeroth order in a 1/N expansion so this behaviour is as 
expected. The case of N = 2 with two electrons per site is interesting as here the Fermi 
energy lies in the hybridisation gap leading to qualitatively different behaviour. 

We look now in more detail at the experimental behaviour we would like to 
explain. At high temperatures there is a Curie-Weiss-like susceptibility. xs can be 
fitted to ( T  - a)-’ where 0 < 0 and there are large effective moments (> pB). At 
low temperatures the behaviour is smooth and the susceptibility tends to a constant 
value which for the heavy-fermion systems is greatly enhanced over the value expected 
for a normal metal. This large Pauli-like susceptibility can be characterised by a small 
energy scale, TK,  by defining xs(T  = 0) = p i / ( kBTK)  where p,, is the effective moment. 
TK is known as the ‘Kondo’ temperature. The low-temperature behaviour is especially 
interesting as a variety of behaviour is observed. Many of the compounds show a 
rise in the susceptibility up to a maximum at T = T,. T,, 0 and T, are all of the 
same order of magnitude and experimentally universal ‘scaling relations’ are found. 
However, this behaviour is not completely universal and the maximum is not observed 
in all the compounds. UBe,, and CeCu,Si,, for example, show a monotonic decrease 
in xs as T increases. We can compare the behaviour of UPt, and UBe,, both of which 
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have similar values of TK and 0. UPt,, has a pronounced maximum at T N 20 K 
which would lead us to expect a similar feature for UBe,,. This is not observed. Several 
compounds show more anomalous behaviour. SmB,, CeSn, and CePd, all exhibit a 
susceptibility ‘tail’ for very low temperatures (Gschneider 1985, Veenhuizen et a1 1985, 
von Molnar et a1 1982). The susceptibility has a maximum at T - TK which as we 
further decrease the temperature is followed by a minimum after which there is a sharp 
upswing as xs tends to zero. Experiments have shown that this ‘tail’ cannot be simply 
accounted for in terms of magnetic impurities and is an intrinsic feature. The data 
on the specific heat also shows interesting features. In general C, varies linearly with 
temperature at very low temperatures, C, = y T ,  which is the behaviour expected for 
a Fermi liquid. y shows approximately the same enhancement as xs(T  = 0). A plot of 
C,/T against T tends to have a fairly sharp maximum as we increase from T = 0, 
the area under this anomaly being of the order of the entropy associated with a local 
moment, S = k,lnN. The maximum in C, is at about the same temperature as the 
maximum in xs. Again the behaviour is not universal. UPt,, for example, shows a 
rapid downward fall in C, as T increases (Brodale et a1 1986). C,, can be fitted to 
yT $6 T 3  In T .  Very different behaviour is seen for SmB, (von Molnar et al 1982). The 
evidence of a linear T dependence is doubtful and C, appears to be better fitted to an 
exponential. This and other evidence suggests that this compound is a semiconductor 
with the Fermi energy lying in the gap. 

The paper is organised as follows. In section 2 we consider the usual mean-field 
equations and report on the numerical solutions as a function of temperature and also 
magnetic field. In the next section we introduce the direct f-f hopping parameter t 
and discuss the effect that this has. Finally we consider the differences between the 
one-impurity and lattice problems and explain the very different temperature behaviour 
obtained for the two problems. We discuss also how the temperature dependence of nf 
differs for the uranium heavy-fermion compounds. 

2. Solving the mean-field equations at finite T and h 

The mean-field equations are as follows (Rasul and Desgranges 1986): 

r ( N - 1 ) W  

where 

where E,  is the bare f-electron energy, V is the hybridisation term (assumed constant), 
W is the conduction electron bandwidth and po is the conduction electron density of 
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states which is also assumed to be constant. P2 = (1 - n f ) V 2 ,  A, = V2p0 /n  and ef 
is the effective f-level energy. The Fermi energy p is measured relative to the Fermi 
energy of the unhybridised conduction electrons. 

These were solved numerically for a variety of values for N keeping the total 
number of electrons constant (2 electrons per lattice site). For comparison we have 
also solved (2.1) and (2.2) for N = 2 keeping the Fermi level constant. We took 
E,  = -0.8 eV, W = 10 eV and V = 1 eV. In figure 1 we show the variation of n f  with 
temperature in units of TK, where TK is defined as pi/[k,Xs(T = O)] for N # 2. The 
results for N = 2, 4 and 6 and for N = 2 with p kept constant (broken curve) are 
shown. We see that nf does indeed vary slowly with T and only reaches nf = 1 for 
T - lOT, (not shown on diagram) where we would expect that the behaviour is that 
of the weak-coupling regime. The change with temperature becomes slightly faster as 
N increases. Comparison with the case where p is kept constant shows the importance 
of determining the Fermi level accurately. Here nf reaches 1 for T - TK as in the 
one-impurity problem. The change in the Fermi level with temperature gives us an 
important difference between the one-impurity and lattice problems. We note that to 
a good approximation the Fermi level is given by p = [l - n f ( T ) ]  W .  This is just the 
value expected for a normal Fermi sea containing 1 + (1 - n,) non-interacting electrons 
per site. 
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Figure 1. nf as a function of T / T K  for N = 2, 4 and 
6. The broken curve shows the result for N = 2 with 
p kept constant. 

Figure 2. X S / X ~  as a function of T / T K  for N = 2, 4 
and 6. The broken curve shows the results for N = 2 
and total number of electrons n, + nf = 2.01. 

We can also calculate the magnetic susceptibility and specific heat. We consider 
first the susceptibility. This can be found by adding a term h~,,mf~fi, into the 
Hamiltonian. The effect is to change ef -+ ef + hm. The free energy can be found 
and differentiating twice with respect to h gives x S .  We note that only the explicit 
dependence of F on h has to be considered as we have d F / a n f  = d F / d e f  = 0 from the 
minimisation condition. Strictly speaking we ought also to add in a term coupling the 
conduction electrons to the field. However at zero temperature the effect is to add a 
very small correction O(m/m*)  to the susceptibility and we do not expect this to change 
at higher temperatures. 

The expression for the free energy is: 
F = AF - iAnf (2.6) 
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where 

(2.7) 
k,iw m,i  

where a = -t and E,*(k) is found by replacing f f  -+ er + hm in the expression for E + ( k ) .  - 
This describes the two renormalised bands. Using Poisson's formula we obtain 

The sum over k can be performed giving 

(2.9) 

where the limits are given by = E,,[(N - 1)W] - p and y;, = E,,(-W) - p. We 
can now take the second derivative with respect to h and take the limit h -+ 0. There 
are two types of term, one coming from the differentiation of the integrand and the 
other from the field dependence of the limits. We obtain 

(2.10) 

The contribution to the susceptibility from each band is given by the difference of two 
terms. We in fact find that the contributions from the upper band, a = +, are small 
and it is the interplay of the two lower-band terms which determines the behaviour. In 
the integrals f ( e )  can be expanded as a series in T2 and for low T we expect to see a 
T 2  dependence. The second term comes from band-edge effects. It has an exponential 
behaviour and in general vanishes as T -+ 0. We expect an appreciable contribution 
from excitations to the lower band edge for temperatures - E-[ (N  - 1 )  W ]  - p. 

The results are shown in figure 2 where we have plotted xs(T)/x:  against T I T ,  
where $ is the zero-temperature limit of xs for N # 2. We see that N = 2 is a special 
case. Here the lower band is completely full so the Fermi level is in the gap at T = 0 
giving zero susceptibility. This comes from a complete cancellation of the two terms 
in (2.10). The susceptibility then rises to a maximum at T N T K  which corresponds to 
excitations across the gap. Although for N = 2 the results cannot be considered to be 
accurate, we nonetheless expect that this is at least qualitatively correct. For U = 0, 
where U is the on-site Coulomb repulsion for the f electrons, the case of n = 2 has 
the Fermi level lying in the gap and we have an insulator. By Luttinger's theorem 
we must then also have an insulator even as U -+ x. For the other cases the low-T 
dependence is - T2.  This can be found analytically and shown to scale as Tg2. At 
higher temperatures the contribution from the band edge starts to play an increasingly 
important role and brings the susceptibility down. We see the characteristic maximum 
in the susceptibility at temperatures - 0.2TK. As N increases the position and height of 
the maximum increases. This is due to the position of the band edge increasing relative 
to the Fermi level meaning that the exponential terms are only becoming important at 
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higher temperatures. Plotting l/xs against T we see that the behaviour is linear above 
the maximum T, and that the low-temperature part of the curve deviates above the 
high-temperature extrapolation. The curve extrapolates to a negative intercept on the 
T axis. The intercept is given by 0 - 0.5TK in all the cases. The gradient of the line is 
not exactly k g / &  differing from - 50% for N = 2 to - 8% for N = 8. This systematic 
decrease in the discrepancy as N increases appears to be connected to the fact that 
we are using the zeroth-order solution in a 1/N expansion. We note that the three 
characteristic temperatures T,, 0 and T,  are all of the same order of magnitude with 
T,  < 0 < TK. The results can be compared with the experimental scaling relations 
TK 1: 2 0  and T,  = 50 (Laurence et a1 1981). Considering the approximations made 
the agreement is seen to be remarkably good especially for the first of these relations. 
We note that as N increases T,  also increases which will tend to improve the agreement 
for the second. These relationships are universal which would mean that solving the 
equations for arbitrary E,, i.e. arbitrary nf(0), and plotting our results as xs(T)/xs(0) 
against T/TK ought to give us identical results. We have looked at E,  = -0.6 and 
E,  = -0.4. The first gives nf(0) N 0.82 which can be compared to nf(0) N 0.97 which 
was found for E,  = -0.8. The zero-temperature susceptibilities differ by a factor of 8 
which is appreciable. The curves differ only slightly and to a good approximation the 
same relationships between T K ,  T,  and 0 hold. For E,  = -0.4 we obtain nf(0) N 0.5 
and ~ ~ ( 0 )  is about 60 times smaller than that for E,  = -0.8. Here the difference in 
the curves is greater and the relationships are T,  = 0.25TK and 0 = O.6TK. The 
theory does not give exact universality as we go into the mixed-valence regime but the 
differences in the renormalised values are not great especially for nf close to one. 

We can compare our results with those for several mixed-valence compounds 
(see e.g. Wohlleban 1983 for a review of experimental data for YbCuAl) and get 
good agreement. We can also compare our results with those for the heavy-fermion 
compound, UPt,. The situation is complicated as there is a slight curvature in the plot 
of 1;' against T which persists to very high temperatures. This is due to crystal field 
effects. If we extrapolate from the very-high-temperature region then the deviation 
from linear behaviour begins for T significantly greater than T,  and falls below the 
extrapolation. This is not consistent with what we find. However, if we extrapolate 
from smaller values of T ,  e.g. T - 300 K, the deviation only starts to be seen for T 
close to T,  and is above the extrapolated curve which is in agreement with our result. 

We note that experimentally there is no evidence for any of the compounds having 
zero susceptibility which would seem to exclude the N = 2 result. It is interesting to 
note however that if we add or subtract a small number of electrons (i.e. nf f n ,  = 2+q) 
then this is sufficient to push the Fermi level into one of the bands where there is a large 
density of states giving a large zero-T susceptibility. The susceptibility decreases rapidly 
(approximately exponentially) due to the band-edge effects which dominate because the 
Fermi level lies so close to the band edge. At higher T however the behaviour is virtually 
indistinguishable from that for N = 2. This gives us the distinctive susceptibility 'tail' 
followed by a minimum and then a maximum as T increases. In figure 2 the results 
for N = 2 and n, + nf = 2.01 are shown by the broken curve. We note that within our 
theory we need only add an arbitrarily small number of electrons to see this effect. To 
some extent this is an artefact of our theory where we have taken a square density 
of states for the conduction band which leads to sharp band edges. A more realistic 
density of states would smooth the bands at the edge and q would need to be finite 
for a significant ~ ~ ( 0 )  to be seen. Nonetheless, we would expect that for q reasonably 
small the same effect would be produced. 
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It is also possible to calculate the specific heat or equivalently the entropy S. S is 
most easily calculated from S = ( F  - U)/T  where F can be calculated as above and 
U is given by 

(2.1 1) 

The results are shown in figure 3 where we have plotted S/(k,lnN) against T/TK 
for N = 2, 4 and 6. At low T there is a linear T dependence. S increases rapidly 
saturating at T - TK. Although the entropy rapidly increases towards its high-T value, 
S = k,lnN, it appears to stop a little short. Presumably the extra entropy would be 
recovered if we went beyond mean-field theory. This suggestion is borne out by the 
observation that the accuracy with which the entropy is given increases with increasing 
N. 

N 
6 2 5  

2 0  

1 0  

0 5  1 0  1 s  2 0  2 5  

T/  TK T /  TK 

Figure 3. S / ( k e  In N )  as a function of T / T K  for 
N = 2, 4 and 6. 

Figure 4. C v / ( Y 0 T )  as a function of T / T K  for N = 2, 
4 and 6. The broken curve shows the result for N = 2 
and n, + nf = 2.01. 

C, can be found from this and the results are shown in figure 4 where we have 
plotted C,,/(yoT) against T/TK where yo is the zero-temperature limit of C,/T for 
N # 2. We note the increase in the Wilson ratio (i.e. the dimensionless ratio of ~ ~ ( 0 )  to 
y) as T is increased from zero. There is a sharp maximum for T somewhat smaller than 
T K  which gets larger as N increases. From the form of the equations we can see that 
there will be no T3 In T term. This term only arises when we go beyond mean-field 
level (Rasul and Desgranges 1986). For some of the compounds we are losing an 
important piece of the low-temperature physics by considering only the mean-field 
solutions. The N = 2 case is again interesting. There is no evidence for a linear T 
dependence and the behaviour is dominated by exponential terms. Again the results 
are not accurate but we expect them to be qualitatively correct. They are in agreement 
with experimental results for SmB,. We note that there is e..ridence that the Fermi level 
lies in or near the hybridisation gap for this compound thus explaining this unusual 
dependence. For N = 2 and n, + nf = 2.01 we find evidence of a small specific heat 'tail' 
similar to that for the susceptibility (broken curve in figure 4). The high- T dependence 
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is again just that for n, + nf  = 2. Experimentally the specific heat data below 15 K is 
difficult to analyse and is extremely sample dependent. The relation C, = yT + pT3 
is not obeyed over any reasonable range of T .  Nonetheless, a linear term in C,/T 
against T 2  is found as T + 0, where y can be large. The values for y vary widely from 
sample to sample. These results are consistent with our theoretical picture where the 
susceptibility tail is due to the Fermi level lying very close to the gap giving us very 
anomalous low-temperature behaviour. We note that within our theory the ‘tail’ arises 
due to a small perturbation from the case where n, + nf = 2, and we would expect a 
large sample dependence. 

We consider now a different type of crossover. So far we have looked at the 
crossover from the Fermi-liquid region to the local-moment behaviour as a function 
of temperature. A similar type of crossover can be observed as a function of applied 
r’nagnetic field. If we apply a large enough magnetic field we will force the f electrons 
to behave like local moments. This problem has also been considered for the one- 
impurity case where, as before, the occurrence of a phase transition prevented the 
high-magnetic-field weak-coupling regime being investigated. 

1 2 3 1 5 6 7 8  . 
h 

Figure 5. m / p o  and 30(1 - nf) as a function of magnetic field h. The broken curve shows 
the results when p is kept constant. 

The equations we have are similar to those we had previously for the susceptibility 
except that we no longer take the limit h + 0. The results of solving them numerically 
at zero temperature are shown in figure 5 where we plot mf/po against t? where mf is 
the moment induced on the f electrons, po is the value expected for the local moment 
and t? = h/k,T, = gpBH/k,TK. We compare two cases: the case where the field 
dependence of the Fermi level is properly taken into account and the case where p is 
replaced by a constant value. The effect is analogous to that found before. For p held 
constant nf  increases to nf  = 1 for h N 6TK at which point mf/pLo = 1 also. There 
is a phase transition at this point and the weak-coupling regime is not seen. This is 
analogous to the behaviour of the single impurity where we note that a magnetic field 
on the f electrons does not have a significant effect on the Fermi level. For the proper 
calculation the field dependence of the Fermi level must be taken into account and this 
has the effect of slowing down the increase in both nf  and mf. As a result of this the 
high-field weak-coupling regime can be accessed by the mean-field solution. 
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3. Including direct f-f hopping 

We consider now what happens when we include a direct f-f hopping term into our 
Hamiltonian. It has been shown that such a term can have a large effect on the 
zero-temperature linear coefficient of specific heat, y (Harrington et a! 1988). 

The term we add is xi,.,, tijf,',fj,. We specialise to the case of nearest-neighbour 
hopping only and assume the same dispersion relation for t k  as for f k .  With these 
conditions the additional term in the mean-field Hamiltonian becomes 

t t  
W ' k f k m f k m  

km 
(3.1) 

where ? = (1 - nf) t .  The main effect of this term is simply to renormalise f f  -+ f f  + p f k  
in the expressions for E + ( k )  and A + ( k )  where p = ?/ W .  The following additional term 
also comes into the RHsof the expression for E f :  

If the linear coefficient of specific heat is now calculated as a function of t there is 
a point at which there is a crossover from a density of states with a gap in it (which is 
what we expect from an ordinary Anderson model) to a continuous density of states 
(more reminiscent of a Hubbard model). At this point there is a discontinuity in y. In 
the Anderson-like region the mass enhancement is given approximately by P 2 / f f  with 
small corrections of order p while in the Hubbard-like regime the mass enhancement 
is approximately p-' with small corrections depending on P. We note that to some 
extent the phase transition is an artefact of the theory. It is the sharp band edges, which 
as mentioned previously comes from using a constant conduction electron density of 
states, that are the origin of the discontinuity. A conduction electron density of states 
which was smoothed off at the edges would lead to renormalised quasiparticle bands 
which were also smoothed off slightly at the edges. This would mean that there was 
no discontinuity in y. Nonetheless the density of states would increase very rapidly as 
we moved away from the band edges and C, would vary very rapidly with t in the 
vicinity o f t  - t,. Qualitatively the effects would be the same. 

It is interesting to ask what happens to this picture as the temperature is increased. 
Clearly the distinction between the two cases will be blurred out as at finite temperature 
both bands have a finite occupation, whichever regime we are in. We might, however, 
expect to get some interesting temperature-dependent behaviour for t - t,. Solving 
for nf and ef we find a smooth variation of nf with t even for T = 0. cf,  however, 
varies sharply at t = t, = 0.101. As T increases this is smoothed out. In figure 6 we 
show the T I T K  dependence of n, where n, is the number of f electrons in the upper 
band and T K  is defined for t = 0. The diagrams for n+ show clearly the effects of the 
transition. For t = 0, n, is zero at T = 0 and increases slowly with T ;  for t = 0.095, 
which is just below the critical value for t ,  n, is again zero for T = 0 but increases 
much more rapidly with increasing T. For t = 0.105, which is just above t,, n, has a 
small finite value even at T = 0 but the higher-T behaviour is very similar to that for 
t = 0.095. Finally when t is appreciably bigger than t ,  there are a reasonable number 
of f electrons in the upper band even for T = 0. 
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Figure 6. The number of electrons in the upper band, n+, as a function of T / T K  for a 
variety of values o f t .  

With these extra features the expression for the free energy becomes 

where 

1 
e* =-- { e f - e ( l + P ) i -  [ ( F ~ - F ( ~ - P ) ~ + ~ P P ~ ] ~ ’ ~ } .  

2P 
(3.4) 

As before this can be differentiated twice with respect to h and xs found. 
At zero temperature the integrals can be performed analytically and comparison 

with y shows that the Wilson ratio is equal to one for all t as expected. The discontinuity 
arises due to the term in f (E+(-W)  - p) which jumps discontinuously from 0 to 1 as 
the Fermi level crosses the upper band. Previously it was only the contribution from 
the lower band which determined the behaviour but here we expect the upper band to 
play a crucial role too. 

In figure 7 we show xS/$ as a function of t for several values of temperature, 
where xg is the zero-temperature value for t = 0. We see how the discontinuity is 
smoothed out as T increases until at high temperatures xs looses all dependence on t. 
We note that as nf + 1, p + 0 and the model reduces to the ordinary Anderson model. 

The behaviour of xs as a function of T is interesting. For t < t ,  we have a T 2  rise 
in the susceptibility up to a maximum. As t approaches t ,  the rise in xs becomes more 
rapid as here positive exponential terms from the upper band edge begin to play a part. 
For t just bigger than t,, xs has a rapid decrease with decreasing temperature and there 
is no maximum. Finally for t $ t ,  there is a small T 2  dependence but the maximum is 
much less pronounced. In figure 8 we show the T dependence of x;’ for different values 
of t ,  t = 0, t = 0.095, t = 0.105 and t = 0.2 as before. The features mentioned above are 
clearly seen. We find also that the deviation from the high-temperature extrapolation 
occurs at higher temperatures when t is included. For t = 0 the deviation only occurs 
for T close to T, while for the higher values of t it occurs for T > T,. We note 
in particular that the behaviour for t = 0.105 is reminiscent of those heavy-fermion 
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Figure 7. X S / $  as a function of t for a variety of 
temperatures. variety of values o f t .  

Figure 8. (xs /y$) - '  as a function of T / T K  for a 

compounds which do not show a maximum in their susceptibilities e.g. UBe,,. The 
inverse susceptibility deviates above the high-T extrapolation as expected for this case. 

The entropy and specific heat can also be calculated. The entropy rises to the same 
high-T limit as previously but does so more slowly. The specific heat has a maximum 
at a similar value of T but the maximum is less pronounced and much broader. These 
features can be understood in the following way. With direct f-f hopping we expect the 
'Fermi-liquid' nature of the f electrons to be more pronounced and this is manifested by 
a slower crossover to the local-moment behaviour. The entropy rises more slowly and 
the high-temperature Curie-Weiss-like behaviour only occurs for higher temperatures. 
It is difficult to compare the specific heat results with experimental data as the usual 
experimental plot is C,/T against T 2 .  If we plot this we find that the maximum gets 
lost (as it does in the experimental plots) and the differences between the different 
values o f t  become much less pronounced. 

4. Comparison with the single impurity 

We have shown that the temperature-dependent properties of the mean-field solution 
for the lattice are different to those for the single impurity. Our results have shown 
that is important to determine the Fermi level correctly and include its temperature 
dependence. These effects are not present in the one-impurity problem and it is this 
which appears to be the important distinction between the two cases. We discuss here 
why the Fermi level plays such an important role. 

We consider first the variation of the valence nf with temperature for the one- 
impurity problem. nf has to be chosen to minimise the free energy F .  From the 
definition, F = U - T S ,  we see that the minimum is determined by the interplay 
of the entropy which we want to make as large as possible and the internal energy 
which we want to be small. For small T the entropy is given by S = yT which 
increases rapidly as nf approaches one. This leads us to expect that nf will increase 
with temperature. We now need to consider the role of the energy. As nf varies the 
number of conduction electrons changes which tends to change the Fermi level p. For 
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a collection of non-interacting impurities the change in the Fermi level gives rise to a 
term in the energy 

A U  - 6 W[n,(T)  - nf(O)] (4.1) 

where 6 is the impurity concentration (Newns et a2 1983). This acts in opposition to 
the entropy effects and it is advantageous for nf to remain close to its zero-temperature 
value. We note that the condition that a number of impurities can be considered as 
independent is 6 < e f / W  (Nozieres 1985) so the above effect is likely to be small. 
Furthermore (4.1) is likely to be an overestimate. The picture we have is of a single 
impurity being screened by an electron cloud which contains precisely n, electrons. 
This screening is local so any change in nf produces a change in the concentration 
of conduction electrons only in the vicinity of the impurity. This has the effect of 
pinning the Fermi level to the impurity level and p remains constant. The temperature 
dependence of n, is controlled by entropy considerations and nf increases rapidly to 
one. 

For the lattice the situation is rather different. The position of the Fermi level is 
likely to be of greater importance and it will clearly vary by a greater amount when 
there is a contribution from each site. We expect the extra term in the energy to be 
larger and the screening effect to be much smaller since the number of electrons in the 
screening cloud is much less than one (Millis and Lee 1987). 

For the lattice we obtain at zero temperature 

p = W[1 - n,(T)]. (4.2) 

This can be shown analytically for T = 0 (provided W is large) but is in fact a very 
good approximation for finite temperature as well. The effect of this change in p on the 
internal energy is not however W[nf(T) - nf(0)] as might have been expected. This is 
due to the fact that the change in the total energy from the conduction electrons exactly 
cancels the change from the shift in the f-level position. Nonetheless, the temperature 
dependence of p is significant. The effect of a decrease in p is to increase ef and so 
reduce nf. This ‘negative feedback’ tends to keep nf at its initial value. This can be 
compared to the case where we keep p constant where there is no such increase in cf 
and we expect nf to increase at a similar rate to the single-impurity problem. 

The energy effects cannot be ignored for the lattice and the tendency is for nf 
to change much more slowly with temperature meaning that we only get to nf = 1 
for much higher temperatures. The mean-field solutions continue to work into the 
high-temperature regime. 

The model can be extended to describe the uranium compounds where the valence 
fluctuations are between f2 and f3 (Rasul and Harrington 1987). Both the valence 
states are magnetic and the behaviour is symmetric in both integral valence limits. The 
low-T entropy diverges as nf --t 2 or 3 and has a minimum at n, = 2.4. For n,(O) > 2.4 
we expect nf to increase with T while for n, < 2.4 we expect it to decrease. However, 
if n,(O) is in the middle of the valence regime then we are close to a fairly shallow 
minimum in S and the entropy effects are small. This is the relevant situation for the 
uranium heavy-fermion compounds which have nf - 2.5. We, therefore, might expect 
that the T dependence of nf is very small in both the lattice and one-impurity cases. 
Our results are easily extended to show that this is indeed the case. At the mean-field 
level the equations for uranium can be solved at finite temperatures and the results 
show a very slow variation of n, with temperature both for the one-impurity problem 
and for the lattice with and without p being kept constant. 
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5. Conclusions 

We have considered the temperature dependence for the valence, susceptibility and 
specific heat for a mixed-valence lattice using the slave-boson technique. We show 
that the mean-field solutions which describe correctly the low-temperature Fermi- 
liquid behaviour are also sufficient to give us the high-temperature local-moment 
behaviour and to extrapolate smoothly between the two regimes. The high-magnetic- 
field behaviour is also obtained. This is in marked contrast to the one-impurity problem 
where the high-temperature and magnetic-field behaviour is not given by the mean-field 
solution. We show that the important factor in giving this different behaviour is the 
change of the Fermi level with temperature or field which is appreciable for the lattice 
but very small in the one-impurity case. We consider also the case of the uranium 
systems. There are important differences and for nf(0) - 2.5 the high-temperature 
behaviour can be obtained even for the one-impurity problem. 

The crossover between strong- and weak-coupling behaviour is central to the 
heavy-fermion problem and it is interesting to see this arising naturally out of a 
relatively simple approach. We note that the slave-boson mean-field solution gives us a 
Hamiltonian which is bilinear in fermion operators with renormalised parameters and 
it therefore automatically gives us quasiparticle bands and Fermi-liquid-like behaviour 
at low temperatures. It is not clear, however, that this will lead to the correct local- 
moment behaviour at high temperatures. It is interesting to note that we are getting 
the correct weak-coupling behaviour even though we are below the phase transition 
and might have thought we were still in the strong-coupling regime. 

Despite the simplicity of the approach the results are in good qualitative agreement 
with experiment. At high temperatures we observe a Curie-Weiss susceptibility xs - 
( T  - a)-' where 0 is negative and is in good agreement with the observed scaling 
relation 0 = 2TK. The effective moments are somewhat smaller than the local moments 
of the free ions but tend towards the value expected as N increases. Similarly the values 
for the position of the low-T maximum in xs agree better with experiment as N gets 
large. This is as expected since we are using the zeroth-order solution in a 1/N 
expansion. 

We show that interesting behaviour occurs when the number of electrons is close 
to the number of states in a band. This appears to explain the susceptibility 'tail' seen 
in several compounds and the specific heat data for SmB,. 

The behaviour of the specific heat agrees qualitatively with what is seen for those 
compounds where the T3 In T term is not dominant. The entropy under the low-T 
anomaly is - k ,  In N ,  the agreement again improving as N increases. It is interesting 
that in an approximation which we know misses an important part of the low-T physics 
(i.e. the T3 In T term) we nonetheless get behaviour which is qualitatively correct. 

Including direct f-f hopping extends our parameter space and produces a much 
richer model with a variety of low-T behaviour. We show that this may be significant, 
given the different behaviour which is in fact observed. The Fermi-liquid-like behaviour 
is more apparent at low temperatures and the crossover to the high-temperature 
regime is somewhat slower. Nonetheless, at sufficiently high temperatures local-moment 
behaviour is again observed. 
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